MedicalScanner

Latest

  • NPL, Imperial College create room-temperature maser, promise more sensitive beams

    by 
    Jon Fingas
    Jon Fingas
    08.16.2012

    Masers, or microwave lasers, have rarely been as viable as their regular counterparts; they need temperatures near absolute zero, exotic vacuum chambers or strong magnets just to run at all, which safely rules out carrying a maser as a pocket pointer. The National Physical Laboratory and Imperial College London might put that gap in practicality to bed after developing a maser that can run at room temperatures. Instead of using ruby to boost the microwave strength, the scientists rely on a less pronounceable p-terphenyl crystal treated with pentacene that can handle ordinary amounts of heat. There's still much work left in refining the technology: it has yet to stay active for sustained periods, only works in a narrow bandwidth and chews through an ample amount of power. Once it's given the appropriate polish, however, the extra sensitivity of the improved maser could be a boon for medical scanning, bomb disposal or even future space communication that could punch through the atmosphere.

  • Scientists produce stronger T-rays, bring Tricorders closer to reality

    by 
    Amar Toor
    Amar Toor
    01.23.2012

    A group of scientists from Imperial College London and Singapore's Institute of Materials Research and Engineering (IMRE) have developed a new technique that could have far reaching impacts for Star Trek fans everywhere. It all involves something known as Terahertz (THz), or T-rays: electromagnetic rays that have already been used in full-body airport scanners and have the potential to be used across a much broader range of medical and environmental applications. Because every molecule can be uniquely identified within the THz range, these T-rays can be used to pick up on cancerous cells and other biological matter, perhaps even within a Tricorder-like scanner. Now, Imperial College's Stefan Maier and his team of scientists say they've found a way to create a stronger beam of T-rays, using so-called "nano-antennas" to generate an amplified THz field. In fact, this field can produce about 100 times more power than most other THz sources, which could allow for sharper imaging devices. "T-rays promise to revolutionize medical scanning to make it faster and more convenient, potentially relieving patients from the inconvenience of complicated diagnostic procedures and the stress of waiting for accurate results," Maier explained. "Thanks to modern nanotechnology and nanofabrication, we have made a real breakthrough in the generation of T-rays that takes us a step closer to these new scanning devices." For more details, check out the links below.

  • Georgia Tech researchers developing tricorder-like medical scanner

    by 
    Donald Melanson
    Donald Melanson
    05.22.2008

    We've already seen some attempts to create a tricorder-like device, but this latest crack it at by some researchers at Georgia Tech looks like it could well be the closest to the real thing to date -- if it ever turns into an actual device, that is. The big advance with this one, it seems, is the use of a new mosaic narrowband filter, which includes photosensitive pixel sensors that can observe different wavelengths and allow for multispectral imaging. According to the researchers, the filter could also be laminated with standard imaging sensors used in digital cameras, making an all-in-one handheld device possible. That would apparently let individuals use the device to detect everything from the severity of bruises to contamination in food, or even perform remote sensing in mining, to name but a few applications. The researchers still have quite a bit more work to do on it before any of that's possible, however, and they're now seeking collaborative or financial support to further develop the device.[Via Daily Tech]