gallium

Latest

  • Will gallium nitride electronics change the world?

    by 
    Christopher Schodt
    Christopher Schodt
    07.02.2020

    The semiconductor GaN has already changed the world once, it's at the heart of blue and white LEDs, but researchers are looking at how this materials could revolution power systems, space travel, telecommunications, and even processors.

  • Stretchy circuits will make for better wearables and robots

    by 
    Steve Dent
    Steve Dent
    02.29.2016

    Smart clothing and robots alike might soon get better thanks to a breakthrough from a team of Swiss researchers. They created relatively thin electronic circuits that can be stretched like rubber up to four times their original length in any direction. In addition, it can be cycled that way nearly a million times without cracking or losing conductivity. That makes it perfect for biological sensors, artificial skin, prosthetics or for electronics that can easily be sewn into fabrics.

  • University of Michigan makes silicon from liquid metal, aims for low-cost chips

    by 
    Jon Fingas
    Jon Fingas
    01.25.2013

    Forming silicon normally requires extreme temperatures of more than 2,000F, with the expensive energy to match. The University of Michigan has developed a technique involving liquid metal that could shed most of the heat -- and cost. By coating a liquid gallium electrode with silicon tetrachloride, researchers can generate pure silicon crystals through the gallium's electrons at a comparatively cool 180F. While the crystals are currently small, bigger examples are at least theoretically possible with new metals or other refinements. Any eventual commercial success could lead to much easier, and likely cheaper, manufacturing for processors and solar cells; given that silicon still forms the backbone of most technology, real-world use can't come quickly enough.

  • NC State builds stretchable wires from liquid metal, keeps headphones humming (video)

    by 
    Jon Fingas
    Jon Fingas
    12.19.2012

    More than a few of us have had that moment of panic when our headphone cords catch on an object and cut the listening short -- sometimes permanently. Researchers at North Carolina State University could help mitigate those minor musical catastrophes with wiring that stretches up to eight times its normal length. The method fills an elastic polymer tube with a liquid gallium and indium alloy that delivers the electricity. By keeping the materials separate, unlike many past attempts, the solution promises the best of both worlds: the conduction we need, and the tolerance for tugs that we want. NC State already has an eye on stretchable headphone cords, as you'll see in the video after the break, but it also sees advantages for electronic textiles that could endure further abuse. As long as the team can eventually solve a problem with leakage when there's a complete break, we'll be glad enough to leave one of our common audio mishaps in the past.

  • New process for nanotube semiconductors could be graphene's ticket to primetime (video)

    by 
    James Trew
    James Trew
    09.30.2012

    In many ways, graphene is one of technology's sickest jokes. The tantalizing promise of cheap to produce, efficient to run materials, that could turn the next page in gadget history has always remained frustratingly out of reach. Now, a new process for creating semiconductors grown on graphene could see the super material commercialized in the next five years. Developed at the Norwegian University of Science and Technology, the patented process "bombs" graphene with gallium, which forms droplets, and naturally arranges itself to match graphene's famous hexagonal pattern. Then, arsenic is added to the mix, which enters the droplets and crystallizes at the bottom, creating a stalk. After a few minutes of this process the droplets are raised by the desired height. The new process also does away with the need for a (relatively) thick substrate to grow the nanowire on, making it cheaper, more flexible and transparent. The inventors state that this could be used in flexible and efficient solar cells and light emitting diodes. We say forward the revolution.

  • Ultra-pure material lets electrons discover each other on the quantum dance floor

    by 
    Sharif Sakr
    Sharif Sakr
    07.28.2011

    These guys aren't Purdue University professors, they're DJs. That thing on the left? It isn't a high-mobility gallium-arsenide molecular beam epitaxy system, it's their decks. It creates an ultra-pure material so perfectly latticed that it traps electrons between its layers and stops them bouncing around like drunken fools at the high school prom. By squeezing them ever so tightly, it lulls the particles into an "exotic" slow dance, at which point they become "aware" of each other and start performing correlated motions that are essential for quantum computing. That's a still a long way off, but if one day we find ourselves affixing gallium arsenide swabs to our quantum motherboards, we'll raise our lighters in the air. Informative PR after the break.