t-rays

Latest

  • T-rays produce 3Gbps short-range wireless, make WiFi pout in the corner

    by 
    Jon Fingas
    Jon Fingas
    05.16.2012

    The last time we saw T-rays, they were busy scanning bodies for tumors and security threats. Six researchers from the Tokyo Institute of Technology are now aiming the terahertz-level frequencies at a less organic target: fast wireless. Running at 542GHz, a rate that makes 60GHz ultra wideband look pokey, the scientists are sending data through the ether at about 3Gbps. The speed isn't as fast as the 7Gbps peak of WiGig, and the bandwidth runs dry at just 33 feet away, but it comes out of a resonant tunneling diode measuring 0.04 square inches -- definitely small enough to fit into a smartphone. The speed could magnify using higher frequencies and power levels, too, with 100Gbps being the dream. Knowing that it can take years for academic papers to translate to real products, we're not holding our breath for T-ray routers anytime soon. Still, the technology could make wideband a realistic option for handhelds and put the mere 1.3Gbps of 802.11ac WiFi to shame. [Thanks, Andrew. Image credit: Deborah Miller and Warren Scott, Connexions]

  • Metamaterials used to focus Terahertz lasers, make them useful

    by 
    Vlad Savov
    Vlad Savov
    08.10.2010

    Forget old and busted X-rays, T-rays are the future, man! It was only recently that we were discussing Terahertz lasers and their potential to see through paper, clothes, plastic, flesh, and other materials, but that discourse had to end on the sad note that nobody had managed to make them usable in a practical and economically feasible way. The major hurdle to overcome was the diffusion of Terahertz radiation -- which results in weak, unfocused lasers -- but now researchers from the universities of Harvard and Leeds seem to believe they've managed to do it. Using metamaterials to collimate T-rays into a "tightly bound, high powered beam" will, they claim, permit semiconductor lasers (i.e. the affordable kind) to perform the duties currently set aside for sophisticated machinery costing upwards of $160,000. Harvard has already filed a patent application for this innovation, and if things pan out, we might be seeing body scanners (both for medical and security purposes), manufacturing quality checks, and a bunch of other things using the extra special THz stuff to do their work.