Nanotubes

Latest

  • Science Magazine

    Carbon nanotube yarn generates electricity when stretched

    by 
    Steve Dent
    Steve Dent
    08.25.2017

    Wearable makers have long sought to harvest electricity from your movement, but current tech is expensive and inefficient. However, researchers from Texas and South Korea have discovered a promising method using our good old friend, the carbon nanotube. The team twisted the lightweight tubes into tight, elastic-like coils, so that they rotate and generate electricity when stretched. The threads (called "twistron") could lead to new types of generators or self-powered wearables that can track your heart rate and breathing.

  • Stephanie Precourt, University of Wisconsin-Madison

    Carbon nanotube transistors promise faster, leaner processors

    by 
    Jon Fingas
    Jon Fingas
    09.05.2016

    The computing industry sees carbon nanotube transistors as something of a Holy Grail. They promise not just faster performance and lower power consumption than silicon, but a way to prevent the stagnation of processor technology and the death of Moore's Law. However, their real-world speed has always lagged behind conventional technology... until now, that is. University of Wisconsin-Madison researchers have created what they say are the first carbon nanotube transistors to outpace modern silicon.

  • ICYMI: VR Mars bus tour, self-assembling nanowire and more

    by 
    Kerry Davis
    Kerry Davis
    04.19.2016

    #fivemin-widget-blogsmith-image-456992{display:none;} .cke_show_borders #fivemin-widget-blogsmith-image-456992, #postcontentcontainer #fivemin-widget-blogsmith-image-456992{width:570px;display:block;} try{document.getElementById("fivemin-widget-blogsmith-image-456992").style.display="none";}catch(e){}Today on In Case You Missed It: Lockheed Martin is encouraging kids to get into STEM with a Mars Experience Bus, with giant displays that look as though they're actually driving on the surface of Mars. Rice University created nanotubes that quickly self-assemble into nanowire. And Yamaha created an acoustic guitar that can store and loop back reverb and chorus sounds. We are also collectively irritated by the latest smart mattress with sensors inside, designed to catch your partner cheating, on your own mattress, when you're not at home. Ugh. As always, please share any great tech or science videos you find by using the #ICYMI hashtag on Twitter for @mskerryd.

  • Microscopic gold tubes can both detect and destroy cancer cells

    by 
    Jon Fingas
    Jon Fingas
    02.15.2015

    There's no doubt that doctors would prefer to treat cancer as soon as they spot it, and it looks like nanotechnology might give them that chance. Researchers at the University of Leeds have successfully tested gold nanotubes that are useful for both imaging and destroying cancer cells. Since the tubes absorb near-infrared light frequencies, which both generate heat and render human skin transparent, you only need to zap them with lasers of varying brightness to achieve multiple ends. You can use a relatively low brightness to reveal tumors, while high brightness will heat the tubes enough to kill nearby tumorous cells. The shape also has room for drugs, so you can deliver medicine at the same time.

  • MIT's bionic plants could be used as energy factories and sensors

    by 
    Jon Fingas
    Jon Fingas
    03.17.2014

    In many ways, plants are ideal technology hosts -- they're outdoor-friendly, self-healing and pollution-free. It only makes sense, then, that MIT scientists want to harness that potential by augmenting our leafy friends with nanotechnology. The researchers have found that injecting nanoparticles and carbon nanotubes into a plant can extend its natural abilities, or add functions that would be tricky to replicate with purely synthetic devices. One lab test supercharged photosynthesis, extracting much more energy than normal; another introduced gas sensors that could detect the nitric oxide from a car's exhaust. There's a lot of necessary refinement before bionic plants are practical, but we won't be surprised if our gardens eventually double as energy sources and air quality monitors.

  • IBM Labs develops 'initial step' towards commercial fabrication of carbon nanotubes

    by 
    James Trew
    James Trew
    10.28.2012

    Commercialization of carbon nanotubes is one of the holy grails of next-gen computing, and IBM thinks it's made crucial steps toward making this a reality. This isn't the first time that we've heard such a claim, of course, but IBM's considerable resources will make this particularly interesting. The specific problem it's been tackling is placing enough semiconducting nanotubes together to be useful in commercial chips, with current attempts being more in the hundreds, rather than billions that would be required. The new approach uses ion-exchange chemistry that allows controlled placement of nanotubes at two orders of magnitude greater than before, with a density of roughly a billion per square centimeter. To achieve this, the nanotubes are mixed with a soap-like substance that makes them water-soluble. Next, a substrate comprising two oxides and a hafnium oxide "trench" is immersed in the soap-solution, which results in the nanotubes attaching to the hafnium oxide canals with a chemical bond. Simple when you think about it! IBM hopes that as the materials and method are readily accessible now, that industry players will be able to experiment with nanotube technology at a much greater scale. Though, as we've become accustomed, there's no solid timescales on when this might realistically unfold.

  • MIT pencils in carbon nanotube gas sensor that's cheaper, less hazardous (video)

    by 
    Steve Dent
    Steve Dent
    10.10.2012

    Carbon nanotube-based sensors are good at sniffing out all kinds of things, but applying the cylindrical molecules to a substrate has traditionally been a dangerous and unreliable process. Now, researchers at MIT have found a way to avoid the hazardous solvents that are currently used, by compressing commercially available nanotube powders into a pencil lead-shaped material. That allowed them to sketch the material directly onto paper imprinted with gold electrodes (as shown above), then measure the current flowing through the resisting carbon nanotubes -- allowing detection of any gases that stick to the material. It works even if the marks aren't uniform, according to the team, and the tech would open up new avenues to cheaper sensors that would be particularly adroit at detecting rotten fruit or natural gas leaks. For more info, sniff out the video after the break.

  • New process for nanotube semiconductors could be graphene's ticket to primetime (video)

    by 
    James Trew
    James Trew
    09.30.2012

    In many ways, graphene is one of technology's sickest jokes. The tantalizing promise of cheap to produce, efficient to run materials, that could turn the next page in gadget history has always remained frustratingly out of reach. Now, a new process for creating semiconductors grown on graphene could see the super material commercialized in the next five years. Developed at the Norwegian University of Science and Technology, the patented process "bombs" graphene with gallium, which forms droplets, and naturally arranges itself to match graphene's famous hexagonal pattern. Then, arsenic is added to the mix, which enters the droplets and crystallizes at the bottom, creating a stalk. After a few minutes of this process the droplets are raised by the desired height. The new process also does away with the need for a (relatively) thick substrate to grow the nanowire on, making it cheaper, more flexible and transparent. The inventors state that this could be used in flexible and efficient solar cells and light emitting diodes. We say forward the revolution.

  • Ubiquitous nanotubes could reboot Edison-era nickel-iron battery technology

    by 
    Steve Dent
    Steve Dent
    06.28.2012

    Back in the 1920s, Thomas Edison's dream of an electric automobile was ultimately foiled by those meddling petroleum engines. But thanks to nanotube research from Stanford University, one legacy from that era may regain some glory: nickel-iron batteries. It turns out that carbon nanotubes doped with nickel and iron crystals can top up the normally slow-charging cells in a matter of minutes -- according to the scientists, that's almost 1,000 times faster than in the past. Although the batteries couldn't power your Volt or Prius due to a lack of energy density, they could give an extra jolt to their lithium-ion siblings for quicker starts and regenerative braking. The researchers are working on improving stability to allow more charging cycles, but it might be an extra in-your-face for Edison if it pans out.

  • All-carbon solar cell draws power from near-infrared light, our energy future is literally that much brighter

    by 
    Jon Fingas
    Jon Fingas
    06.22.2012

    What's this orange-like patch, you ask? It's a layer of carbon nanotubes on silicon, and it might just be instrumental to getting a lot more power out of solar cells than we're used to. Current solar power largely ignores near-infrared light and wastes about 40 percent of the potential energy it could harness. A mix of carbon nanotubes and buckyballs developed by MIT, however, can catch that near-infrared light without degrading like earlier composites. The all-carbon formula doesn't need to be thickly spread to do its work, and it simply lets visible light through -- it could layer on top of a traditional solar cell to catch many more of the sun's rays. Most of the challenge, as we often see for solar cells, is just a matter of improving the energy conversion rate. Provided the researchers can keep refining the project, we could be looking at a big leap in solar power efficiency with very little extra footprint, something we'd very much like to see on the roof of a hybrid sedan.

  • Nanotubes sniff out rotting fruit, your dorm room might be next

    by 
    Steve Dent
    Steve Dent
    05.01.2012

    Our favorite ultra-skinny molecules have performed a lot of useful functions over the years, but keeping fruit flies away was never one of them. Now MIT scientists, with US Army funding, have discovered a way to give these nanotubes the canine-like sense of smell needed to stop produce spoilage and waste. Doping sheets of them with copper and polystyrene introduces a speed-trap for electrons, slowing them and allowing the detection of ethylene gas vented during ripening. A sensor produced from such a substance could be combined with an RFID chip, giving grocers a cheaper way to monitor freshness and discount produce before it's too late. If that works, the team may target mold and bacteria detection next, giving you scientific proof that your roommate needs to wash his socks.

  • Nanotech-enhanced 'smart paint' promises to detect structural damage

    by 
    Donald Melanson
    Donald Melanson
    01.30.2012

    We've seen scientists explore a number of ways to make paint "smarter" over the years, and now a team of researchers at the University of Strathclyde in Glasgow have devised a method that they say could do nothing short of "revolutionize structural safety." The key to that is some novel nanotechnology that effectively turns the paint into a sensor network that's able to detect minor structural faults before they become a severe problem. More specifically, the paint consists of a mix of highly aligned carbon nanotubes and a recycled waste material known as fly ash -- when the nanotubes bend, the conductivity changes, indicating that there could be a structural problem developing. What's more, the fly ash is also said to give the paint a cement-like structure, which the researchers say could let it be used in harsh conditions where traditional structural monitoring can prove difficult (and expensive).

  • New nanotube battery technology leads to blisteringly fast recharges, improved safety features

    by 
    Chris Barylick
    Chris Barylick
    11.07.2011

    Some day, your restroom break may be enough time to charge your [insert nifty gadget here] halfway. A group of researchers at the Department of Energy's Argonne National Laboratory has discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. The upshot: laboratory tests showed that new batteries produced with this material could be rejuvenated to 50 percent of their maximum charge in less than 30 seconds. This was accomplished by replacing conventional graphite anodes with titanium nanotube andodes. Following the experiment, lead researcher Tijana Rajh and her colleagues noted that as the battery cycled through several charges and discharges, its internal structure began to orient itself in a way that dramatically improved the battery's performance. Furthermore, using anodes composed of titanium dioxide instead of graphite could improve the reliability and safety of lithium-ion batteries and help avoid scenarios in which the lithium can deposit on the graphite anodes, causing a dangerous chain reaction known as "thermal runaway." Copious amounts of related technobabble can be found in the links below, and there's a video just past the break, too.

  • Stanford builds super-stretchy skin sensor out of carbon nanotubes (video)

    by 
    Daniel Cooper
    Daniel Cooper
    10.25.2011

    An artificial skin that senses pressure, pinches and touch sounds like a macguffin from The Outer Limits (the episode "Valerie 23" if we recall correctly), but that's what a team from Stanford University has cooked up on the back of its pick-up truck. Sensors made of silicon films with a matrix of liquid carbon nanotubes ensure the material snaps back to its original shape no matter how frequently it's pulled about. When compressed, the electrical conductivity of the skin changes, and by measuring where and by how much, it knows the location and pressure of where you jab your fingers. The team wants to combine this super stretchy film with a much more sensitive sensor and if it can do it, then the technology could end up as an artificial skin for burn victims, covering prosthetic limbs or even replacing your multitouch display -- just be careful, you might hurt Siri if you pinch-to-zoom her too hard.

  • Invisibility cloak made of carbon nanotubes uses 'mirage effect' to disappear

    by 
    Lydia Leavitt
    Lydia Leavitt
    10.05.2011

    If the phrase "I solemnly swear I'm up to no good" means anything to you, you'll be happy to know that scientists have come one step closer to a Potter-style "invisibility cloak" so you can use your Marauder's Map to the fullest. With the help of carbon nanotubes, researchers have been able to make objects seem to magically vanish by using the same principle that causes mirages. As anyone who's been especially parched along Route 66 knows, optical illusions occur when heat changes the air's temperature and density, something that forces light to "bend," making us see all sorts of crazy things. Apply the same theory under water using nanotubes -- one molecule carbon coils with super high heat conductivity -- and scientists can make a sheet of the stuff "disappear." Remember, it only works underwater, so get your gillyweed ready and check out the video after the break.

  • Researchers say nanorockets could deliver medicine quickly within the blood

    by 
    Lydia Leavitt
    Lydia Leavitt
    10.03.2011

    Faster delivery is always better when it comes to pizza, Thai food and now... drugs? Doctors seem to think so as they're experimenting with a new method of delivering medicine to the bloodstream via tiny nanotubes powered by rocket fuel. By storing healing meds within the platinum-coated metal tubes, doctors have been able to propel the tiny vessels up to 200 times their own length per second -- faster than swimming bacteria. It works as such: by introducing a hydrogen peroxide/water solution, the platinum reacts, sending it zipping forward and catalyzing the peroxide into water and oxygen. The downside? Even though the fuel is only .25 percent peroxide, it's still slightly toxic -- so it looks like it's back to the drawing board until they can develop a safer alternative. Spiders, perhaps? Check out the video demonstration after the break.

  • Cakes of nanotubes may measure terahertz laser power, not years wasted

    by 
    Terrence O'Brien
    Terrence O'Brien
    07.20.2011

    Terahertz lasers sure are awesome but, there's one big problem, we have no reliable way of measuring their power -- a pretty important piece of data to have before you start bombarding people with their flesh penetrating rays. A new coating for laser calibration tools called VANTA seems like a viable candidate for sucking up those longer than visible wavelengths. Constructed of vertically aligned carbon nanotubes, up to 1.5mm in length, cakes of VANTA are not only more absorbent than other materials used for measuring a laser's power (which makes it more accurate and faster), it's also quite easy to handle. Chunks of the stuff can be sliced off with a razor and shuttled to the detector on the blade's side. We give it a week before someone cuts a piece with one of those new MacBook Airs.

  • MIT's genetically modified viruses boost solar-cell efficiency by herding nanotubes

    by 
    Jesse Hicks
    Jesse Hicks
    04.27.2011

    The wizards of MIT have done it again. Having checked artificial leaves and Operabots off the to-do list, they've moved on to improving the efficiency of solar cells. Their technique combines a genetically modified version of the M13 virus with carbon nanotubes, which have already been shown to increase efficiency. Unfortunately, some nanotubes enhance solar cell performance, while others inhibit it – and both types tend to clump together, negating their benefits. The modified M13 virus, however, can separate the two types as well as prevent clumping; we've seen similar use of the Tobacco mosaic virus to build better electrodes. Adding virus-built structures to dye-sensitized solar cells increased power conversion efficiency by almost one-third and, with only one additional step in the manufacturing process required, the new approach could be rapidly taken up by existing production facilities. MIT: proving once again that viruses are good for more than just smiting your enemies.

  • Researchers build synthetic synapse circuit, prosthetic brains still decades away

    by 
    Dana Wollman
    Dana Wollman
    04.25.2011

    Building a franken-brain has long been a holy grail of sorts for scientists, but now a team of engineering researchers have made what they claim to be a significant breakthrough towards that goal. Alice Parker and Chongwu Zhou of USC used carbon nanotubes to create synthetic synapse circuits that mimic neurons, the basic building blocks of the brain. This could be invaluable to AI research, though the team still hasn't tackled the problem of scope -- our brains are home to 100 billion neurons, each of which has 10,000 synapses. Moreover, these nanotubes are critically lacking in plasticity -- they can't form new connections, produce new neurons, or adapt with age. All told, the scientists say, we're decades away from having fake brains -- or even sections of it -- but if the technology advances as they hope it will, people might one day be able to recover from devastating brain injuries and drive cars smart enough to avert deadly accidents.

  • New phase-change memory gets boost from carbon nanotubes, puts PRAM claims to shame

    by 
    Christopher Trout
    Christopher Trout
    03.12.2011

    We've been hearing about the potential flash killer for years, and now a team of University of Illinois engineers is claiming that its new phase-change technology could make the PRAM of our dreams look quaint by comparison. Like so many groundbreaking discoveries of late, carbon nanotubes are at the heart of the this new mode of memory, which uses 100x less power than its phase-change predecessors. So, how does it work? Basically, the team replaced metal wires with carbon nanotubes to pump electricity through phase-change bits, reducing the size of the conductor and the amount of energy consumed. Still too much technobabble? How 'bout this -- they're using tiny tubes to give your cellphone juice for days. Get it? Good. [Thanks, Jeff]