PennStateUniversity

Latest

  • Getty

    Scientists make battery that runs on air and carbon dioxide

    by 
    Jamie Rigg
    Jamie Rigg
    02.10.2017

    Researchers at Penn State University have potentially come up with yet another way we could create energy from all that nasty carbon dioxide we pump into the atmosphere. They've developed an inexpensive flow cell battery that uses mostly water solutions containing either dissolved CO2 or dissolved normal air -- the technical name for the dissolving process is called sparging, just FYI. Because the liquids contain different concentrations of CO2, they have different pH levels, and it's this imbalance that generates electricity.

  • Here's how 'flawless' materials break on a nanoscopic scale

    by 
    Jon Fingas
    Jon Fingas
    06.08.2015

    Have you ever wondered why a supposedly defect-free material ends up cracking? University of Pennsylvania researchers have an answer. They've studied supposedly flawless materials (in this case, palladium nanowires) to see how they break on a nanoscopic level. As it turns out, these failures usually come down to atoms floating around when their bonds break, usually with little change in temperature. It's seemingly random, too, since the bonds vary widely from atom to atom. The scientists hope that identifying these weak points will help design devices that hold up under strain, even at the smallest possible level. Don't be surprised if you're one day using gadgets that are much more reliable, even at the smallest possible levels. [Image credit: VladKol/Shutterstock]

  • New quantum tunneling transistors to make PCs less power-hungry

    by 
    Chris Barylick
    Chris Barylick
    12.12.2011

    Yes, that awesome new 8-core chip in your PC is the fastest thing on the block, but it's got your utility meter spinning accordingly. Fortunately, researchers from Penn State have come up with a new high performance transistor that may turn future chips from power hogs into current-sipping silicon. The group, in cooperation with semiconductor manufacturer IQE, has created a high-performance transistor capable of significantly reducing power demand whether it's idle or switching. Doctoral candidate Dheeraj Mohata's the one who made it happen by inventing an alternative to traditional MOSFET (metal-oxide semiconductor field-effect transistors) technology capable of turning on and off using far less power. Mohata's method uses a tunneling field effect transistor crafted from dissimilar semiconductor materials to provide instant on-off capability at 300 millivolts -- compared to MOSFET's one volt requirement -- to provide a power savings of 70 percent. You can dig deeper into the technical transistor details at the source, but all you really need to know is that the ladies love a PC with paltry power consumption.

  • Microbial fuel cell produces hydrogen from wastewater without wasting energy

    by 
    Amar Toor
    Amar Toor
    09.22.2011

    Back in 2005, Bruce Logan and his team of Penn State researchers developed a microbial fuel cell capable of converting poop into power. Now, Logan has refined his system to the point where it can produce hydrogen from wastewater or biodegradable organic materials without using a drop of grid electricity, and without emitting even a hint of carbon dioxide. His approach, outlined in the September 19th issue of the Proceedings of the National Academy of Sciences, involves something known as reverse-electrodialysis (RED) -- a process that harvests energy from the ionic discrepancy between fresh and salt water. Logan's bacterial hydrolysis cell (pictured left) features a so-called RED stack that's comprised of alternating positive and negative ion exchange membranes, which it uses to split water molecules into hydrogen and oxygen. Normally, this process would involve about 25 pairs of membranes, but by using RED technology in conjunction with electricity-producing exoelectrogenic bacteria, Penn State's team was able to extract hydrogen with just five membrane pairs. All told, Logan's cells proved to be about 58 to 64 percent energy efficient, while producing between 0.8 to 1.6 cubic meters of hydrogen for every cubic meter of liquid that passed through the system. The researchers' results show that only one percent of that energy was used to pump water through the cells, which are completely carbon neutral, as well. According to Logan, this breakthrough demonstrates that "pure hydrogen gas can efficiently be produced from virtually limitless supplies of seawater and river water and biodegradable organic matter." Somewhere, the US Navy is taking scrupulous notes. Full PR after the break. [Image courtesy of Penn State / Bruce Logan]

  • Penn State busts out 100mm graphene wafers, halcyonic dream inches closer to reality

    by 
    Vlad Savov
    Vlad Savov
    02.03.2010

    Yes, we've been marching on this road to graphene-based superconductive electronics for a long, long time. But in the space of one week, we've now seen two significant advancements pop up that rekindle our hope for an ultrafast tomorrow. Hot on the heels of IBM's recent bandgap achievement comes Penn State University with a 100mm wafer of pure graphene gorgeousness. Built using silicon sublimation -- a process of essentially evaporating the silicon away from the carbon layer -- these are the biggest graphene wafers yet, and field effect transistors are being built atop them now to start performance testing early this year. Naturally, nobody's sitting on this laurel just yet, with further plans afoot to expand beyond 200mm wafers in order to integrate fully into the semiconductor industry, whose current standard wafer size is around 300mm in diameter. On we go then.

  • Ferroelectric polarpolymers will chill your beer, save the planet

    by 
    Joseph L. Flatley
    Joseph L. Flatley
    09.13.2008

    Sure, you want to keep that keg of Natural Ice you scored nice and cold, but what did Al Gore say about global warming? According to Professor Qiming Zhang and Penn State University, we can see a more eco-friendly kegerator appliance on the horizon -- courtesy of the growing field of ferroelectric polarpolymers. Instead of relying on gasses similar to Freon, a process which can only be performed with energy-intensive compressors and heating coils, the new kegerators will rely on something called magnetic field refrigeration. In magnetic field refrigeration, electricity is introduced to a polarpolymer, causing the usually disordered molecules of the polarpolymer to become highly ordered. As this happens, heat is dispersed and the material grows cold. When the electricity is switched off this process reverses itself. And this doesn't just mean more fun for the college crowd: someday Zhang predicts this technology will be used in everything from self-cooling gear for firefighters to chilling your CPU.[Via The Future Of Things]