PhotovoltaicCells

Latest

  • Spherical glass lens concentrates sunlight by up to 10,000 times, boosts solar cell efficiency

    by 
    Alexis Santos
    Alexis Santos
    08.28.2012

    Eking out more power from solar cells is an ongoing challenge for scientists, and now architect André Broessel has developed a spherical glass energy generator that's said to improve efficiency by 35 percent. Acting as a lens, the rig's large water-filled orb concentrates diffused daylight or moonlight onto a solar cell with the help of optical tracking to harvest electricity. In certain configurations, the apparatus can be used for solar thermal energy generation and even water heating. In addition to the oversized globe, Broessel has cooked up a mobile version of the contraption for domestic use and an array of much smaller ball lenses with dual-axis tracking that offers 40 percent efficiency. These devices aren't the first venture into concentrated photovoltaics, but they are likely among the most visually impressive. If the Barcelona-based architect's vision of the future comes true, you'll be seeing these marbles incorporated into buildings and serving as standalone units. Hit the source links below for the picture spread of prototypes and renders.

  • Two US startups break solar efficiency records, aim to light up your life

    by 
    Andrew Munchbach
    Andrew Munchbach
    02.08.2012

    Two US startups are breaking solar efficiency records in their quest to bring clean, cost-effective, eco-friendly energy to a power grid near you. Alta Devices, based in Santa Clara, CA, has achieved a 23.5 percent efficiency rating with its standard solar panel, while Semprius, a Durham, NC company, has achieved a rating of 33.9 percent with its concentrated photovoltaic offering -- besting the previous records of 22.9 percent and 33 percent, respectively. Interestingly enough, both outfits chose to utilize a new material to construct their sun-sopping cells: gallium arsenide. The material, while more expensive, is better suited for absorbing the sun's energy, especially when compared to silicon, the cheaper element typically used. Alta and Semprius are looking to proliferate solar power by further refining the technology, making its price per kilowatt equivalent to that of fossil fuels without the use of government subsides. Here comes the sun...

  • Ford teams with SunPower, offers EV owners $10,000 solar charging system

    by 
    Christopher Trout
    Christopher Trout
    08.11.2011

    We might not know how much Ford's expecting for the Focus Electric, but it's already put a hefty $10,000 price tag on one of its accessories. The company announced today that it has teamed with SunPower to offer purchasers of the upcoming Focus Electric and C-MAX Energi a 2.5-kilowatt rooftop solar system. That setup will apparently provide "enough renewable energy production to offset the energy used for charging" cars that log 1,000 miles per month (about 30 miles per day) or less. If $10,000 is just a little too rich for your blood, there's always Best Buy's $1,500 budget-friendly charging station. Full PR after the break.

  • Photovoltaic polarizers could make self-charging smartphone dreams come true

    by 
    Lydia Leavitt
    Lydia Leavitt
    08.11.2011

    There's nothing worse than losing the charge on your iPhone at the company picnic. But fear not, you won't be stranded Twitter-less next to the potato salad if UCLA's new energy recycling LCD technology ever makes it to market. According to its inventors, the traditional LCD polarization process loses as much as 75 percent of light energy -- something that eats around 80 to 90 percent of the device's power. By using polarizing organic photovoltaic cells, however, the LCD-packing gizmo can recycle its own lost backlight energy, keeping itself charged for longer. What's really cool is these cells can recycle indoor or outdoor light as well, so you will essentially never lose a charge -- or have to speak to another human IRL again. Full PR after the break.

  • MIT researchers revolutionize solar cell printing, fold the power of the sun into your everyday home (video)

    by 
    Joseph Volpe
    Joseph Volpe
    07.12.2011

    Wouldn't it be neat if you could power a few gadgets around the house with some tastefully chosen, solar cell-embedded curtains? Alright, so this MIT-pioneered tech's not quite that advanced yet, but it's destined to have a Martha Stewart Living future. By eschewing liquids and high temperatures for gentler vapors kept below 120 degrees Celsius, researchers were able to cheaply print an array of photovoltaic cells on "ordinary untreated paper, cloth or plastic." And here's some additional food for thought -- the vapor-deposition process used to create these cells is the same as the one that puts that "silvery lining in your bag of potato chips" -- science, it's everywhere. Despite the tech's home furnishing friendly approach, this breakthrough printing technique can't be done with your everyday inkjet, but it will make the cost of solar energy installations a bit cozier. Its flexible durability aside, the cells currently operate at only one percent efficiency -- so you might want to buy those drapes in bulk to see a real bottom line kickback. Foldable paper video demonstration after the break.

  • Oregon engineers roll out cheaper, less wasteful solar cells with inkjet printer

    by 
    Christopher Trout
    Christopher Trout
    06.29.2011

    It looks like the push to turn the inkjet printer into the next great manufacturer of solar cells has found another proponent in a team of engineers at Oregon State University. That group of resourceful researchers claims to have created the world's first "CIGS solar devices with inkjet printing," thus giving birth to a new production process that reduces raw material waste by 90 percent. CIGS (an acronym for copper, indium, gallium, and selenium) is a highly absorbent and efficient compound, especially suited to creating thin-film solar cells. The team has used inkjet technology to pump out a CIGS ink with an efficiency of five percent, and a potential efficiency of 12 percent; apparently enough to produce a "commercially viable solar cell." Unfortunately, the group has yet to announce plans to bring the ink to our desktop printer -- so much for that backyard solar farm. Full PR after the break.

  • Solar Sinter solar-powered 3D printer turns sand into glass, renews our faith in higher education (video)

    by 
    Christopher Trout
    Christopher Trout
    06.26.2011

    Where would we be without the world's graduate art projects? In the case of Markus Kayser's Solar Sinter, we might never have seen the day when a solar-powered 3D printer would turn Saharan sand into a perfectly suitable glass bowl. Well, lucky for us (we suppose) we live in a world overflowing with MA students, and awash in their often confusing, sometimes inspiring projects. Solar Sinter, now on display at the Royal College of Art, falls into the latter category, taking the Earth's natural elements, and turning them into functioning pieces of a burgeoning technology. Solar Sinter uses the sun's rays in place of a laser and sand in place of resin, in a process that is perhaps more visually stunning than the results. See for yourself in the video after the break.

  • Solar-powered butterfly chandelier is a fluttering mass of art and light

    by 
    Terrence O'Brien
    Terrence O'Brien
    05.24.2011

    Look closely at that blue blob up above and you'll realize it's made up of 500 butterflies, each one meticulously cut from photovoltaic cells. The hundreds of insects collect the sun's rays as they flutter around a giant glass bulb that turns into a churning mass of light after dusk. The Virtue of Blue chandelier is a stunning work of art by Dutch designer Jeroen Verhoeven that draws connections between the beauty and power of nature and the importance of sustainable energy... or, you know, just something trippy to stare at while you sip a few cocktails at the Blain|Southern gallery in London. %Gallery-124262%