Stanford self-healing plastic responds to touch, keeps prosthetics and touchscreens in one piece

Self-healing surfaces are theoretically the perfect solutions to easily worn-out gadgets, but our dreams come crashing down as soon as deliberate contact is involved; as existing materials don't conduct electricity, they can't be used in capacitive touchscreens and other very logical places. If Stanford University's research into a new plastic polymer bears fruit, though, our scratched-up phones and tablets are more likely to become distant memories. The material can heal within minutes of cuts through fast-forming hydrogen bonds, rivaling some of its peers, but also includes nanoscopic nickel particles that keep a current flowing and even respond to flexing or pressure. The material is uniquely built for the real world, too, with resilience against multiple wounds and normal temperatures. While the polymer's most obvious use would be for mobile devices whose entire surface areas can survive the keys in our pockets, Stanford also imagines wires that fix themselves and prosthetic limbs whose skin detects when it's bent out of shape. As long as we can accept that possible commercialization is years away, there's hope that we eventually won't have to handle our technology with kid gloves to keep it looking pretty.