Latest in Science

Image credit:

Crazy fast X-ray laser catches chemical reactions in the act

Steve Dent, @stevetdent
June 26, 2015
Share
Tweet
Share

Sponsored Links

Scientists at the Department of Energy's SLAC laboratory have taken a "molecular movie" of a chemical reaction for the first time. The results of their research could give new insights into to how chemical bonds form, helping researchers better understand biological processes. To give you an idea of the difficulty of the feat, the critical part of the reaction -- the breaking apart of a ring-shaped gas molecule -- takes a mere 200 femtoseconds (quadrillionths of a second). To record such a rapid process, the researchers used the two mile long Linac Coherent Light Source (LCLS) to fire X-ray laser pulses a mere 25 quadrillionths of a second in duration.

The molecular changes are not captured with visible light like a camera takes a picture, however. Here's how it works: first, the chemical reaction is initiated by blasting the gas (1,3-cyclohexadiene) with a separate, high-powered optical laser. That breaks the molecular bonds, converting it into another gas called hexatriene. While the chemical transformation is still in action, the LCLS X-ray laser strikes the altered molecule, creating a distinctive diffraction pattern that's capture by a detector. The shape of the pattern on the detector helps scientists "infer back what's going on in the molecule," according to lead scientist Mike Minitti.

By varying the time between the optical laser that kicks off the reaction and the X-ray laser (in 25 femtosecond increments), the team could see the chemical bonds breaking apart step-by-step. It took about 100,000 measurements to get enough data to create a simulated "molecular movie" showing the complete transformation. It happens so fast that if it were possible to film it using a real camera, it would have to roll at around 30 trillion frames per second. "Before your eyes, a chemical reaction is occurring that has never been seen before this way," said Minitti. As a result, the study helped resolve "long standing questions about how this (ring-shaped) molecule actually opens up," he added. With the first successful observation of a rapid chemical transformation in a simple gas, the SLAC scientists plan to move onto larger molecules.

All products recommended by Engadget are selected by our editorial team, independent of our parent company. Some of our stories include affiliate links. If you buy something through one of these links, we may earn an affiliate commission.
Comment
Comments
Share
Tweet
Share

Popular on Engadget

The 2020 Engadget Holiday Gift Guide

The 2020 Engadget Holiday Gift Guide

View
DJI’s cinematic FPV drone leaks in photos

DJI’s cinematic FPV drone leaks in photos

View
My return to ‘No Man’s Sky’ was a reminder of death and the void

My return to ‘No Man’s Sky’ was a reminder of death and the void

View
China's lunar sampling robot beams back its first full-color moon shots

China's lunar sampling robot beams back its first full-color moon shots

View
The gold, 8th-generation iPad returns to $299 at Amazon

The gold, 8th-generation iPad returns to $299 at Amazon

View

From around the web

Page 1Page 1ear iconeye iconFill 23text filevr