Artifical sense of touch gets smarter, lets robots really feel

The verdict's still out on whether or not androids dream of electric sheep. But their ability to feel? Well, that's about to approach levels of human sensitivity. We're of course talking about the sense of touch, not emotions. And thanks to work out of Georgia Tech, tactile sensitivity for robotics, more secure e-signatures and general human-machine interaction is about to get a great 'ol boost. Through the use of thousands of piezotronic transistors (i.e., grouped vertical zinc oxide nanowires) known as "taxels," a three-person team led by Prof. Zhong Lin Wang has devised a way to translate motion into electronic signals. In other words, you're looking at a future in which robotic hands interpret the nuances of a surface or gripped object akin to a human fingertip and artificial skin senses touch similar to the way tiny hairs on an arm do.

What's more, the tech has use outside of robotics and can even be levereged for more secure e-signature verification based on speed and pressure of a user's handwriting. And the best part? These sensors can be manufactured on transparent and flexible substrates like the one pictured above, which allows for various real-world applications -- just use your imagination. Pretty soon, even robots will have the pleasure of enjoying the touch... the feel of cotton and maybe even hum that jingle to themselves, too.