plasmon

Latest

  • World's first room-temperature semiconductor plasmon nanolaser created by Berkeley scientists

    by 
    Michael Gorman
    Michael Gorman
    01.14.2011

    We're big proponents of the idea that everything is better with lasers, and a team of researchers at UC Berkeley has created a new type of semiconductor plasmon nanolaser, or spaser, that could eventually find a home in many of your favorite devices. The big breakthrough is that Berkeley's spaser operates at room temperature -- previous spasers could only sustain lasing at temperatures below -250° C -- enabling its use in commercial products. Plasmon lasers work by amplifying surface plasmons, which can be confined to a much smaller area than the light particles amplified by conventional lasers. This allows for extreme miniaturization of optical devices for ultra-high-resolution imaging, high sensitivity biological sensors, and optical circuits 100 times faster than the electronic variety. There's no word on how soon the technology will be commercially available, so you'll have to wait a bit longer for your first laser computer.

  • Physicists create tiny ruler to easily measure nanoscale contraptions

    by 
    Sean Hollister
    Sean Hollister
    08.31.2010

    How do you measure items constructed on a nanoscale assembly line? Why, using a plasmon ruler that measures how much the structure's surrounding gas resonates, of course... and it just so happens that science has theoretically built a better one than ever before. Researchers at China's Wuhan University discovered that by using nanospheres "to modify surface plasmon coupling of a nanorod dimer" -- yes, that's a little over our heads, too -- they could create a linear plasmon ruler that allows one to read how far apart the particles are using a far simpler calculation and modify the range of measurement more easily too. None of this may seem important to you at the moment, but remember: nobody wants imprecisely-sized nanites crawling through their tubes.