Quantum computing isn't exactly synonymous with mainstream (yet), but a team of engineers at the University at Buffalo are looking to overcome some of the most prominent hurdles "that have prevented progress toward spintronics and spin-based quantum computing." Apparently, these gurus have conjured up a semiconductor that "provides a novel way to trap, detect and manipulate electron spin," the latter of which is the most notable. Essentially, the UB group's scheme could open up "new paradigms of nanoelectronics," and it manages to stand out from prior efforts by requiring fewer logic gates and promising to operate in much warmer (20-degrees Kelvin versus 1-degree Kelvin) conditions. Now that they've figured out how to dictate single spin, the subsequent step would be to "trap and detect two or more spins that can communicate with each other" -- you know, a vital precondition for quantum computing.

[Thanks, Jordan]

0 Comments

Researchers develop semiconductor for manipulating electron spin