Researchers at the Department of Energy's Lawrence Berkeley National Laboratory and UC Berkeley have developed an ultra-dense memory chip that is capable of storing data for up to a billion years (besting silicon chips by roughly... a billion years). Consisting of a crystalline iron nanoparticle shuttle encased within a multiwalled carbon nanotube, the device can be written to and read from using conventional voltages already available in digital electronics today. The research was led by Alex Zettl, who notes that current digital storage methods are capable of storing mass amounts of data, but last just decades, while, say, some books have managed to last nearly a thousand years, though the amount of data they contain is quite small. The new method, called shuttle memory, is based on the iron nanoparticle which can move back and forth within the hollow nanotu. Zettl believes that, while shuttle memory is years away from practical application, it could have a lot of archival applications in the future. There's a video after the break, hit the read link for more tiny details.

[Via The Register]