Numonyx phase change memory

Often considered the eventual successor to flash, phase change memory has had a tough time getting to the point where it would truly take over; when it takes longer to write data than conventional RAM, there's clearly a roadblock. The University of Cambridge has the potential cure through a constant-power trick that primes the needed hybrid of germanium, antimony and tellurium so that it crystalizes much faster, committing data to memory at an equally speedy rate. Sending a steady, weak electric field through the substance lets a write operation go through in just 500 picoseconds; that's 10 times faster than an earlier development without the antimony or continuous power. Researchers think it could lead to permanent storage that runs at refresh rates of a gigahertz or more. In other words, the kinds of responsiveness that would make solid-state drives break out in a sweat. Any practical use is still some distance off, although avid phase change memory producers like Micron are no doubt champing at the bit for any upgrade they can get.