Advertisement

Active Book microchip provides hope for exercising paralyzed limbs

Scientists have been experimenting with muscles and technology to solve both human and robotic mobility issues for years. Now it looks as though a team of researchers from University College London, Freiburg University, and the Tyndall Institute in Cork have made a significant leap forward for paraplegics, thanks to a revolutionary microchip the team has dubbed "Active Book." What's notable about the chip is that it stimulates more muscle groups than existing technology without the need for external connections. This was accomplished via micro-packing and precision laser processing, which allowed tiny electrodes to be cut from platinum foil and rolled into a 3D book shape. These platinum foil "pages" close in around nerve roots, and are micro-welded to a hermetically sealed silicon chip. Once embedded into areas within the spinal canal, the chip can work to stimulate paralyzed muscles, implying patients could even "perform enough movement to carry out controlled exercise such as cycling or rowing." A press release from the Council which sponsored the research says the Active Book will begin trials sometime next year -- we can't wait to see the results.

Show full PR text

22/11/2010 Press release: Engineers have developed a new type of microchip muscle stimulator implant that will enable people with paraplegia to exercise their paralysed leg muscles.

Engineers have developed a new type of microchip muscle stimulator implant that will enable people with paraplegia to exercise their paralysed leg muscles.

It is the first time that researchers have developed a device of this kind that is small enough to be implanted into the spinal canal and incorporates the electrodes and muscle stimulator in one unit. The implant is the size of a child"s fingernail.

The Engineering and Physical Sciences Research Council (EPSRC) project is being led by Professor Andreas Demosthenous from University College London. It includes engineers from Freiburg University and the Tyndall Institute in Cork.

"The work has the potential to stimulate more muscle groups than is currently possible with existing technology because a number of these devices can be implanted into the spinal canal", said Professor Andreas Demosthenous. "Stimulation of more muscle groups means users can perform enough movement to carry out controlled exercise such as cycling or rowing."

The devices could also be used for a wide range of restorative functions such as stimulating bladder muscles to help overcome incontinence and stimulating nerves to improve bowel capacity and suppress spasms.

Diagram of the Active Book

The research team has overcome previous limitations by micro-packaging everything into one tiny unit. Latest laser processing technology has been used to cut tiny electrodes from platinum foil. These are then folded into a 3D shape (which looks like the pages of a book, earning the device the name of the Active Book). The pages close in around the nerve roots. They are micro-welded to a silicon chip which is hermetically sealed to protect against water penetration, which can lead to corrosion of the electronics.

The exciting innovation has been welcomed by Universities and Science Minister David Willetts, who said:
Diagram of implantation site

The implant site on the spinal canal

"The Active Book is a good example of how UK scientists and engineers are translating research into innovations that deliver real benefits for society. This tiny implant has the potential to make a real difference to the lives and long-term health of people with paraplegia in the UK and around the world."

The Active Book will be made available for pilot studies sometime next year.
Notes for Editors

The project is co-led by Professor Nick Donaldson of University College London.

Although electrical stimulation of leg muscles has been used for some time, it is usually done by attaching electrodes to the outside of the legs and then connecting the electrodes to an external stimulator. This is too time consuming to be used every day so few people with spinal cord injury continue with this method despite the clear health benefits.

At the moment electrical stimulation of nerve roots in the spinal canal can be carried out using implanted electrodes and an implanted stimulator connected by a cable. This latest research is the first to combine the electrodes and muscle stimulator in one unit so that more nerves can be stimulated and better function achieved.
About the Engineering and Physical Sciences Research Council (EPSRC)

EPSRC is the main UK government agency for funding research and training in engineering and the physical sciences, investing more than £850 million a year in a broad range of subjects – from mathematics to materials science, and from information technology to structural engineering.
About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world's top universities, as reflected by performance in a range of international rankings and tables. Alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 13,000 undergraduate and 9,000 postgraduate students. Its annual income is over £700 million.