Scientists develop rewritable digital storage built into DNA; biological binary exists

We've seen DNA flirt with computing and storage before, but a biological system that can record digital data? That's something different. Stanford researchers used natural enzymes to create rewritable data storage built directly into living cells' DNA. The enzymes can flip DNA sequences back and forth, enabling a programmable, binary-like system where the DNA section is a zero if it points in a particular direction and a one if it points the other way. (Color coding indicates which way a section of genetic code is facing.) The so-called recombinase addressable data (RAD) module can store one bit of information without consuming any power, and in addition to letting scientists switch DNA sequences, it allows them to count how many times a given cell has doubled. That capability could come in handy for studying how cancer spreads, and could even give scientists the ability to "turn off" affected cells. The next step for the scientists will be upping the storage capacity to a byte, which will reportedly take a good ten years. That gives you plenty of time to study up on that science -- for a start, check out a more detailed account of the research in the source link.