Nanowire sensor converts pressure into light, may lead to supersensitive touch devices

Outside of pen input, pressure sensors don't get much love these days. However, Georgia Tech has just built an extremely accurate sensor that could give pressure-based devices their due. When a user pushes down on the new invention, its grid of zinc-oxide nanowires emits light that's captured by fiber optics underneath at a very sensitive 6,300DPI. The combination of high resolution with light-speed responsiveness could lead to touch surfaces that capture far more detail than we're used to. While computing interfaces are clearly prime candidates for the technology, Georgia Tech also sees potential uses in pressure-based fingerprint readers and even devices that simulate touch with skin-like behavior. We've reached out to the school for more information regarding its long-term plans, but it already anticipates improving the sensors with more efficient manufacturing techniques. Take a closer look at the sensor after the break.

Update: We've since had a chance to follow up, and we're told that commercialization is likely five to seven years ahead.

Touch sensor converts pressure into ultrra