nanopore

Latest

  • MinION USB stick decodes DNA in a matter of seconds

    by 
    Sharif Sakr
    Sharif Sakr
    02.20.2012

    If you happen to be "special," then this $900 USB device is just about the worst thing ever. The aptly named MINion serves its masters by interrogating the cells of living organisms and rooting out their genetic secrets. We won't pretend to know exactly how it works, but it starts by pulling a strand of DNA through a razor-like nanotube that unzips the double helix. The nucleotide bases are then electrocuted one by one until they give up their code. The resulting sequence is stored like a ticker-tape readout, for the whole world to see. The MinION can complete its task in seconds and, unlike most other DNA sequencers, it's portable and simply plugs into a laptop. Luckily, it has so far only been shown to work on very short genomes, like those belonging viruses and bacteria, so for now you're probably safe.

  • Diamond shaped supercapacitors could result in faster-charging, higher capacity batteries

    by 
    Tim Stevens
    Tim Stevens
    01.27.2011

    Superconductors pass electricity with zero resistance and make stuff float. Superfluids have zero viscosity and can climb vertical walls to escape containers. Supercapacitors? Well, they don't do anything quite so dramatic, but they could result in batteries that charge faster and hold more charge than ever. Capacitors in general have to run a balance between capacity and fast charging, but these fancy ones with diamond-shaped nanopores in zeolite-templated carbon, developed at Tohoku University in Sendai, Japan, are said to offer the best of both worlds. How good? Cellphones that charge in minutes, electric cars with longer lasting batteries, and free Superman Underoos for all. Naturally there's no word on when these things might actually escape the lab and show up in real batteries, but you already knew that, didn't you.

  • Nanopore DNA sequencing technique promises entire genome in minutes or your money back

    by 
    Tim Stevens
    Tim Stevens
    12.24.2010

    Those vaguely affordable DNA tests that promise to tell you just how likely you are to be stricken by some horrible and unavoidable genetic affliction in the future? They only look at a tiny fraction of the bits and bobs and bases that make up your genetic code. There's a race on to develop a quick and inexpensive way to sequence a human's entire genome, a process that costs about a million thousands of dollars now and takes ages but, via the technique under development at Imperial College London, could be done in a few minutes for a couple of bucks in 10 years. The process relies on nanopores, which are the go-to tech for companies trying to pull this off. Basically, a DNA strand is pushed through a 2nm hole on a silicon chip and, as it moves through, that chip is able to use an electrical charge to read the strand's coding sequence. That is then spit out to a supercomputer to crunch the numbers at a speed of 10 million bases per second and, within minutes, you too can have some hard data to make you freak out about the future -- and maybe a place to put your iPod, too. Update: As many of you pointed out, there are multiple places to get your full genome scanned now for prices in the mere thousands of dollars. Pocket change, really.