Lithium-ionBatteries

Latest

  • A123 Systems becomes America's latest EV battery maker to file for bankruptcy

    by 
    Deepak Dhingra
    Deepak Dhingra
    10.17.2012

    Having been riddled with setbacks, including a major recall of faulty batteries supplied to Fisker Automotive, Michigan's favorite EV battery maker A123 Systems has filed for bankruptcy. It has also announced the sale of its main business units to rival Johnson Controls in a deal pegged at $125 million -- a sad fraction of the billion dollars it raised since it launched in 2001 (not least from government grants). It seems that neither fresh lithium ion innovations nor a potential deal with Chinese investors were able to keep the company out of the red, which leaves A123 on the road to nowhere -- right behind that other DoE-sponsored hopeful, Ener1.

  • NC State nanoflowers can boost battery and solar cell capacity, make great prom accessories

    by 
    Jon Fingas
    Jon Fingas
    10.11.2012

    We see a lot of sleek-looking technology pass through our doors, but it's rare that the inventions could be called beautiful by those who aren't immersed in the gadget world. We'd venture that North Carolina State University might have crossed the divide by creating an energy storage technology that's both practical and genuinely pretty. Its technology vaporizes germanium sulfide and cools it into 20-30 nanometer layers that, as they're combined, turn into nanoflowers: elegant structures that might look like the carnation on a prom dress or tuxedo, but are really energy storage cells with much more capacity than traditional cells occupying the same area. The floral patterns could lead to longer-lived supercapacitors and lithium-ion batteries, and the germanium sulfide is both cheap and clean enough that it could lead to very efficient solar cells that are more environmentally responsible. As always, there's no definite timetable for when (and if) NC State's technology might be commercialized -- so call someone's bluff if they promise you a nanoflower bouquet.

  • Researchers create algorithms that could help lithium-ion batteries charge two times faster

    by 
    Alexis Santos
    Alexis Santos
    10.04.2012

    Researchers at the University of California San Diego have devised new algorithms that could cut lithium-ion battery charge times in half, help cells run more efficiently and potentially cut production costs by 25 percent. Rather than tracking battery behavior and health with the traditional technique of monitoring current and voltage, the team's mathematical models estimate where lithium ions are within cells for more precise data. With the added insight, the team can more accurately gauge battery longevity and control charging efficiency. The group was awarded $415,000 from the Department of Energy's ARPA-E research arm to further develop the algorithm and accompanying tech with automotive firm Bosch and battery manufacturer Cobasys, which both received the remainder of a $4 million grant. Wondering if the solution will ever find its way out of the lab? According to co-lead researcher Scott Moura, it'll see practical use: "This technology is going into products that people will actually use." Update: UC San Diego reached out to let us know that they were awarded $415,000 (not $460,000 as previously noted) out of a grant totaling $4 million (not $9.6 million), split between Bosch and Cobasys. We've updated the post and the press release below to reflect the correct figures.

  • LG Chem develops very flexible cable batteries, may leave mobile devices tied up in knots

    by 
    Jon Fingas
    Jon Fingas
    09.02.2012

    The world is no stranger to flexible batteries, but they've almost always had to be made in thin sheets -- that doesn't amount to a long running time if you're powering anything more than a watch. LG Chem has developed a flexible lithium-ion battery that's not just better-suited to our bigger gadgets but could out-do previous bendable energy packs. Researchers found that coating copper wires with nickel-tin and coiling them briefly around a rod results in a hollow anode that behaves like a very strong spring; mating that anode with a lithium-ion cell leads to a battery that works even when it's twisted up in knots. Join multiple packs together, and devices could have lithium-ion batteries that fit many shapes without compromising on their maximum deliverable power. Some hurdles remain to creating a production-grade battery, such as a tendency for the pack to shed a small amount of capacity whenever it's put under enough stress. LG Chem is fully set on turning these cable batteries into shippable technology, however, and could ultimately produce mobile devices and wearables that really do bend to their owners' every whim.

  • Georgia Tech develops self-charging battery that marches to the owner's beat

    by 
    Jon Fingas
    Jon Fingas
    08.19.2012

    One of the last times we saw the concept of a self-recharging battery, it was part of a high-minded Nokia patent whose ideas still haven't seen the light of day. Researchers at Georgia Tech are more inclined to put theory into practice. Starting from a regular lithium-ion coin battery, the team has replaced the usual divider between electrodes with a polyvinylidene difluoride film whose piezoelectric nature produces a charging action inside that gap through just a little pressure, with no outside voltage required to make the magic happen. The developers have even thumbed their noses at skeptics by very literally walking the walk -- slipping the test battery under a shoe sole gives it a proper dose of energy with every footstep. At this stage, the challenge mostly involves ramping up the maximum power through upgrades such as more squeezable piezoelectrics. Georgia Tech hasn't progressed so far as to have production plans in mind; it's nonetheless close enough that we could see future forms of wearable computing that rarely need an electrical pick-me-up.

  • Korean carbon-coated lithium-ion battery could cut recharge times down to minutes

    by 
    Jon Fingas
    Jon Fingas
    08.15.2012

    Anyone who's had to recharge an EV -- or, for that matter, any mobile device with a very big battery -- knows the pain of waiting for hours while a lithium-ion pack tops up. South Korea's Ulsan National Institute of Science and Technology has developed a conduction technique that could cut that charging time down to less than a minute. By dousing the nanoparticle materials of the battery in a graphite solution that's then carbonized, the researchers make a web of conductors that all start charging at once; current batteries have to charge towards the center slowly, like a not-very-edible Tootsie Pop. The immediate goal is to develop a secondary battery for an EV that could provide extra mileage in a matter of seconds. Here's hoping that the Ulsan team's fast-charging battery is more viable than others and spreads to just about everything -- we'd love to have EVs and laptops alike that power up in as much time as it takes to fill a traditional car at the pump. [Image credit: iFixit]

  • A123 Systems' new lithium ion tech keeps EV batteries cool, your wallet in check

    by 
    Jon Fingas
    Jon Fingas
    06.13.2012

    EV battery maker A123 Systems has had a rocky history as of late following a Fisker battery recall, but it may just be turning the corner with a new lithium ion advancement. Nanophosphate EXT widens the temperature range that A123's lithium iron phosphate-based batteries can withstand before losing power: an EXT battery musters 20 percent more power than before when it's as chilly as -22F and can keep over 90 percent of its original capacity after 2,000 full charges, even if it's been run in a blistering 113F heat. The longevity has its obvious advantages for anyone who lives in an extreme climate, but it could also lead to cheaper EVs and hybrids -- the less cooling a car battery needs, the lower the up-front cost and the lighter the car gets. Full production won't start until the first half of 2013, though that's ample time for companies to at least think about slotting Nanophosphate EXT battery packs into 2014 or later cars such as the Atlantic.

  • Stanford researchers create transparent battery, dream of a see-through iPhone (video)

    by 
    Terrence O'Brien
    Terrence O'Brien
    07.26.2011

    We've had about all of the transparent displays we can handle. Besides, what good is a screen you can see through if the electronics behind it are as opaque as ever? Thankfully, the fine folks at Stanford are working hard to move us towards a future filled with invisible gadgets. Yi Cui and Yuan Yang led a team that have created a lithium-ion battery that appears transparent. In actuality, the cells are composed of a very fine mesh of electrodes, approximately 35-microns wide, that are small enough to appear invisible to the naked eye. The resulting power packs are cheap and flexible but, currently, can only store about half as much energy as a traditional Li-ion battery. Cui has a particular destination in mind for creation, as he told the college paper, "I want to talk to Steve Jobs about this. I want a transparent iPhone!" Check out the video after the break.

  • Researchers make progress with better, safer aqueous lithium-ion batteries

    by 
    Donald Melanson
    Donald Melanson
    08.11.2010

    Claims of better, safer lithium-ion batteries aren't exactly hard to find, but some researchers from Shanghai's Fudan University have now made some progress in an area that has previously proven to be particularly tricky for battery makers. They've managed to create an aqueous lithium-ion battery that substitutes most of the oxygen in the battery for water, which the researchers say not only makes them less flammable, but cheap to produce. As you might have guessed, that's been tried before, but previous attempts have only resulted in a battery that can hold 50 percent of its charge capacity after a hundred cycles -- these new batteries, on the other hand, hang on to 90 percent of their capacity after a thousand cycles. Unfortunately, the researchers still have a ways to go on increasing the actual capacities of the batteries, but they seem confident that they'll eventually be a viable alternative to traditional, more explosion-prone lithium-ion batteries.

  • Fraunhofer takes a stab at non-exploding lithium-ion batteries

    by 
    Donald Melanson
    Donald Melanson
    04.10.2008

    It's hardly the only one working on making lithium-ion batteries a little less likely to blow up in your face, but the prolific folks at Fraunhofer Institute seem to think that they've come up with a solid contender for your future laptop or cellphone, and they're now set to take the wraps off it at the Hannover Messe conference later this month. The key to their solution, it seems, is the use of a non-flammable polymer electrolyte instead of the liquid electrolyte now commonly used in lithium-ion batteries. While that switch cuts down on the explosiveness, it also introduced a fair number of challenges, not the least of which is the fact that polymer becomes less conductive as it gets more solid. Fraunhofer's apparently made some significant progress on that front, however, and while they're still not completely satisfied with the conductivity, they say the batteries could be ready for commercial use in three to five years. They also, not surprisingly, see no end to the uses for 'em, saying that they could not only wind up in laptops and cellphones, but power tools, lawnmowers, and potentially even cars.[Thanks, Mademoiselle Y]